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Abstract Some engineering applications of heuristic multilevel optimization 
methods are presented and the discussion focuses on the dependency matrix 
that indicates the relationship between problem functions and variables. 
Decompositions are identified with dependency matrices that are full, block 
diagonal and block triangular with coupling variables. Coordination of the 
subproblem optimizations is shown to be typically achieved through the use of 
exact or approximate sensitivity analysis. Areas for further development are 
identified. 

Introduction 

Ever since optimization methods have been applied in engineering, 
practitioners have attempted to use them in multilevel schemes. These are 
procedures where a large problem is broken down in a number of smaller 
subproblems; this phase is referred to as decomposition. These subproblems 
are optimized separately and an iterative process is then devised which 
accounts for the coupling so that when it is converged, the resulting optimum 
is that of the original non-decomposed problem; this phase is referred to as 
coordination. 

Multilevel methods can be classified as formal or heuristic according to 
whether the decomposition and the coordination phases are exclusively based 
on the mathematical form of the problem or on understanding of the underlying 
physics. In general, formal methods are more amenable to convergence studies 
than heuristic methods. The distinction between the two classes of methods 
is somewhat arbitrary, however, and, depending on how it is presented, a 
method may be shown to belong to either class. 

This paper covers applications of heuristic multilevel optimization 
methods in engineering design. Problems are assumed to be formulated as 
static nonlinear parametric programming problems. While most applications 
are for structural design problems, reference will be made also to selected 
papers in mechanical, power and electrical engineering. 

optimization and a description of typical applications. The two following 
sections address the decomposition problem and the coordination problem. The 
paper concludes with an assessment of the state-of-the-art and 
recomendations for further work. While the paper discusses primarily two- 
level formulations, most methods may be adapted to decompositions with more 
than two levels. For the sake of generality, the presentation remains in 
terms of a generic design problem. Only a limited number of representative 
papers will be cited. 

Objectives and Examples of Application 

The paper begins with a review of the objectives of multilevel 

Some design problems naturally have a multilevel structure as the 
calculation of their constraints or objective functions are themselves the 
results of minimization or maximization problems. Haftka 111 showed that the 
design of damage tolerant space trusses and wing boxes can be formulated with 
a constraint on maximum collapse load. 

optimization is the improvement of the numerical performance of optimization 
algorithms. In structural optimization, early attempts were direct 
extensions of the fully stressed design methodology. Using methods devised 

By far, the most commonly cited reason for resorting to multilevel 
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by Giles [21 and Sobieszczanski and Loendorf [31, Fulton et al. [4] designed a 
complete aircraft model that involved on the order of 700 design variables 
and 2500 constraints. Schqit and Mehrinfar [51 followed with optimization of 
truss and wing box models that included local and global constraints while 
Hughes [6] developed similar ideas for naval structures. Using a method 
first proposed by Sobieszczanski [7], Wrenn and Dovi [8] optimized a fairly 
complex transport wing model with 1200 variables and 2500 nonlinear 
constraints. Substructuring has also been used to decompose optimization 
problems. Nguyen [91 used it to reduce the cost of the sensitivity analysis 
phase. Schmit and Chang [lo] and Svensson [ll] have looked at optimizing 
substructures independently. In other engineering applications, multilevel 
approaches were used to design underground energy storage systems (Sharma, 
[12]), speed reducers (Datseris, [13]), microwave systems (Bandler and Zhang, 
[14]) and to solve the optimum power flow problem (Contaxis et al. [151). 

Formulating a multilevel problem can also be used to improve its 
mathematical conditioning since variables that have different orders of 
magnitudes and rates of change can be kept separate in the optimization 
process. Probably the most common example of such application is the 
simultaneous sizing and optimization of the geometry of structures in which 
the sizing problem is solved for fixed geometry in an inner loop, while in 
the outer loop, the geometry is modified to optimize the design. This 
approach has been used primarily for space trusses and frameworks, examples 
are given by Felix [16]. Kirsch [17] used a similar formulation to conduct 
the simultaneous analysis and optimization of reinforced concrete beams. 

The design of complex engineering systems is by nature multilevel. 
Designers carry out the effort by breaking the total problem into subproblems 
and assigning each to different units of the engineering team. Each unit has 
developed its own design methodologies and successful designs result from 
skillful integration of objectives, requirements and constraints from each 
unit. This becomes a coordination problem. Sobieszczanski (71 was the first 
to propose to use multilevel coordination methods to solve multidisciplinary 
design problems. Rogan and Kolb [18] showed how a transport aircraft 
preliminary design problem can be treated as a multilevel optimization 
problem. 

De compos it ion 

The general form of the original, non-decomposed optimization problem is 
as follows (vectors are boldfaced and scalars use normal script): 

min f ( X ) ,  st g ( X )  5 0, h(X) - 0 (1) 
X 

The relationship between variables and functions (objective and 
constraints) can be described symbolically by the dependency matrix (Fig. 1). 
There is one column in the matrix for each variable (or vector of similar 
variables) and one row for each function (or vector of similar functions); 
the objective function is listed first. Entry i,j indicates qualitatively 
the relation between function j and variable i. In our figures an entry (X) 
indicates function i depends on variable j; no entry indicates function i 
does not depend on variable j. Figure 1 corresponds to Prob. 1, a general 
nonlinear programing problem where all functions are assumed to depend on 
all variables. 

As discussed by Carmichael [19], "...decomposition implies breaking the 
system into subsystems with interactions and breaking the problem 
[variables,] constraints and [objective] into [variables], constraints and 
[objectives] associated with the subproblems. Decoupling . . .  may be carried 
out by the introduction [or identification] of interaction variables such 
that there results independent optimization problems at the lower level." 
Typical approaches to decomposition are discussed below. 

Decomposition of the Variable Vector 

Without any special structure (that is with a fully populated dependency 
matrix), Prob. 1 may always be decomposed by partitioning the variable 
vector: 
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x = xl,. . .,xn 
It may then be replaced by n problems, the ith of which is - - - - - - - 
min f (Xl,. . .,Xi,l,xi,xi+l,.. .,xn), st g(xl,. . . , x ~ - ~ , x ~ , x ~ + ~ ,  . . .,xn) I 0, 
xi 

- - - - 
and h (X1, . . . ,Xi-l,Xi,Xi+l, . . . , Xn) = 0 (3) 

where an overbar on a variable indicates that the variable is held fixed. 
This approach has been used for simultaneous configuration optimization and 
sizing (Lev, [ 2 0 1 )  and optimal load flow control (Contaxis et al. [15]). 
Typically, no real decoupling results from such a decomposition (the 
dependency matrix remains fully populated), unless one of the subproblems can 
be further decomposed as in Kirsch [17] or Vanderplaats et al. [211. 

Block-Diaqonal Dependency Matrix 

separable objective function and a dependency matrix as in Fig. 2a (assuming 
suitable re-ordering of the variables and constraints) is ideal, since it 
yields totally uncoupled subproblems which can be solved independently of 
each other. The original problem formulation reads: 

From the standpoint of decomposition, a problem having an additively 

I1 

min f (X) = Zf (X. ) st gi(Xi) 5 0 i=l,n; hi(Xi) = 0 i==l,n ( 4 )  x=xl, . . . ,xn l i  = 
resulting in n independent subproblems: 

min fi(Xi) st gi(Xi) 5 0, hi(Xi) = 0 (5) 
'i 

While design problems seldom have such form, it is often assumed that 
they have a similar form in which some functions depend strongly on some 
variables and only weakly on others. This situation is described in Fig. 2b 
where dots denote weak dependency. Assuming additively separable objective 
function, this yields the following n subproblems: 

and hi (gl, . . . 
One of the major shortcomings of this method is that it cannot explicitly 

handle constraints which strongly depend on variables belonging to different 
subsystems. Sobieszczanski and Loendorf [3] and Hughes [61 devised an ad hoc 
procedure to correct the overall design for violations of these constraints. 

Generally, the decomposition of the problem is arrived at in a very 
natural way; it is imposed by the structure or the layout of the engineering 
system considered. Therefore, very few systematic approaches to 
decomposition exist. An exception i s  that used by Datseris [131 for the 
design of mechanisms. Here the key idea is to divide the set of design 
variables in mutually exclusive subsets so that some measure of the coupling 
between the variable subsets is minimized. Coupling is measured by an 
interdependence function based on the design problem objective function. If 
a decomposition in two subsets is desired, the first step is to randomly 
identify two subsets of variables. Then a systematic approach is used to 
exchange variables among the subsets in an effort to lower the value of the 
interdependence function. 

Another approach to systematic decomposition is proposed by Bandler and 
Zhang [14] in their optimization of large microwave systems. Their starting 
point is a matrix similar to the dependency matrix introduced above. They 
use a matrix whose i,j entry is the normalized sensitivity derivative of 
function i with respect to variable j (or a sum of sensitivity derivatives 
calculated at various points in the design space). They manipulate the rows 
and columns of the matrix to finally identify the subproblem to optimize 
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s t a r t i n g  with t h e  r e fe rence  funct ion qroup (with t h e  worst c o n t r i b u t i o n  t o  
t h e  o b j e c t i v e )  and t h e  candidate  v a r i a b l e  qroups ( those  t h a t  a f f e c t  t h a t  
r e fe rence  func t ion  g roup) .  Optimization proceeds with repeated r e d e f i n i t i o n  
of t h e  v a r i a b l e  and funct ion groups making up t h e  subproblem, which a s  t h e  
optimum design i s  reached, includes a l l  v a r i a b l e s  and func t ions .  

Block-Angular Dependency Matrix with Couplinq Variables  

Reasonably complex engineering design problems cannot t y p i c a l l y  be 
formulated with a block-diagonal (Fig.  2a) o r  even a quasi-block diagonal  
(Fig.  2b) s t r u c t u r e .  Indeed, as a l luded  t o  before,  some c o n s t r a i n t s  depend 
s t rong ly  on v a r i a b l e s  belonging t o  seve ra l  subproblems. A more t y p i c a l  
s t r u c t u r e  i s  t h e  block-angular s t r u c t u r e  w i t h  coupling v a r i a b l e s  of Fig.  3a. 
This may r e s u l t  from t h e  ex i s t ence  of a h i e r a r c h i c a l  s t r u c t u r e  i n  t h e  model 
i n  which two l e v e l s  of v a r i a b l e s  and funct ions e x i s t .  A t  t h e  higher  l e v e l ,  
t h e  higher  l e v e l  ( o r  system o r  g loba l )  v a r i a b l e s  a f f e c t  d i r e c t l y  t h e  higher 
l e v e l  c o n s t r a i n t s .  A t  t h e  lower l e v e l ,  f o r  f i x e d  higher l e v e l  v a r i a b l e s ,  t h e  
lower l e v e l  ( o r  subsystem o r  l o c a l )  v a r i a b l e s  a f f e c t  d i r e c t l y  t h e  lower l e v e l  
c o n s t r a i n t s .  Further  decoupling may e x i s t  t h a t  resu l t s  i n  a number of 
independent lower l e v e l  subproblems. The coupling higher  l e v e l  v a r i a b l e s  a r e  
t h e  i n t e r a c t i o n  v a r i a b l e s .  Assuming a d d i t i v e l y  separable  o b j e c t i v e  funct ion,  
t h e  s t a r t i ng  problem would be given by 

m i  n f O ( y )  + C fi(Y,Xi) s t  g o ( Y )  5 0 ,  g i ( Y , X i )  5 0 i = l , n  ( 7 )  
n 

y , q ,  - - .  'Xn 1 
and ho(Y) = 0 ,  hi(Y,Xi) - 0 i = l , n  

The r e s u l t i n g  higher  l e v e l  subproblem would then be 

m i n  f o ( Y )  s t  g o ( Y )  5 0 ,  ho(Y) = 0 

while there would be n independent lower l e v e l  subproblems: 
Y 

min f i (q ,Xi)  s t  g i ( ? , X i )  5 0, hi(f ,Xi)  = 0 
xi 

Haftka [ 2 2 ]  gave a pena l ty  formulation f o r  t h e  same i n i t i a l  problem. 

To  d e r i v e  a problem s t r u c t u r e  a s  i n  Eq .  7 from a general  nonl inear  
programming problem as descr ibed i n  E q .  1, e q u a l i t y  c o n s t r a i n t s  sometimes need 
t o  be introduced.  They t y p i c a l l y  express  t h e  consis tency between t h e  higher 
l e v e l  and t h e  lower l e v e l  models of t h e  system. These can impede convergence 
of t h e  p rocess .  Thareja [23] proposed t o  l i n e a r i z e  them a t  each opt imizat ion 
s t e p  and t o  u s e  them t o  e l imina te  some v a r i a b l e s  of t h e  problem and thus  
reduce i t s  s i z e .  Schmit and Merhinfar [SI  transformed t h e s e  e q u a l i t y  
c o n s t r a i n t s  i n  penalty-type object ive funct ions for t h e  l o w e r  level 
subproblems allowing f o r  incomplete s a t i s f a c t i o n  of t h e  e q u a l i t i e s  a t  t h e  
beginning of t h e  opt imizat ion process, and i n  e f f e c t ,  only achieving a quasi-  
block-angular s t r u c t u r e  as i n  Fig.  3b. 

complex engineer ing s y s t e m s  was f i r s t  addressed by Rogan and Kolb [18] 
who suggested handling it a s  scheduling problem. 

The i s s u e  of automatical ly  generat ing a problem s t r u c t u r e  as i n  Eq. 7 f o r  

Coordination 

Coordination amounts t o  devis ing a scheme i t e r a t i n g  among t h e  subproblem 
op t imiza t ions  such t h a t  t h e  f i n a l  s o l u t i o n  i s  t h a t  of t h e  o r i g i n a l  problem 
(or  one of i t s  s o l u t i o n s ) .  C e n t r a l  t o  t h e  coordinat ion process  i s  t h e  
i d e n t i f i c a t i o n  of coordinat ion v a r i a b l e s  (Carmichael [ 1 9 ] ) .  These v a r i a b l e s  
are he ld  f i x e d  a t  t h e  lower l e v e l ,  g iv ing  independent subproblems which are 
solved s e p a r a t e l y ,  and t h e n  information i s  returned t o  t h e  higher l e v e l  t o  
update t h e  value of t h e  coordinat ion v a r i a b l e s .  T h i s  cyc le  i s  repeated u n t i l  
convergence i s  achieved. Some modif icat ion of t h e  higher  l e v e l  subproblem i s  
necessary t o  e n s u r e  coordinat ion.  

Applicat ions t h a t  r e l y  on v a r i a b l e  vec to r  o r  block-diagonal (or  quasi- 
block-diagonal) decompositions gene ra l ly  do not possess  a n y  coordinat ion 
mechanism. I n  t h e  former case,  coordinat ion i s  rea l ly  not necessary s i n c e  
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each subproblem deals with all the functions of the problem. 
case, this lack of coordination has been long known to prevent finding even a 
local minimum of the problem and probably accounts for some of the 
disappointing results reported by Svensson [lll. In the context of 
structural applications, Sobieszczanski [24] indicated: "...Minimization of 
the individual component masses does not guarantee minimization of the total 
mass. This situation is caused by the inability to control the load path on 
the assembled structure level...". Schmit and Chang [lo] offer a unique 
approach to coordinating problems using a substructuring formulation. 
write the problem variable vector: 

In the latter 

They 

n 

1 
Each vector Xi is manipulated at the local level to satisfy local constraints 
while minimizing stiffness (hence boundary force) changes; vector a is 
manipulated at the global level to minimize the global objective, satisfy the 
global constraints and some local constraints that cannot be satisfied at the 
local level. 

Block-angular decompositions with coupling variables provide an explicit 
coordination mechanism. A feasible coordination technique is always used in 
which the higher level variables are taken as the coordination variables. 
Generally, to provide a means of coordination at the higher level, the effect 
of changes in lower level designs due to changes in higher level variables 
must be known. 

For example, at the end of each lower level optimization, Schmit and 
Merhinfar [5] update limits on higher level behavioral (dependent) variables 
to reflect new lower level designs. To coordinate the lower level designs 
Felix [16] suggests to take a search direction at the higher level that wiil 
minimize the system objective function while continuing to satisfy the 
constraints active at the conclusion of the lower level optimizations. A one 
dimensional search is performed at the higher level that accounts for 
possible higher level constraints. 

variables, they really are implicit functions of these variables. For the 
subproblem of Eq. (8b), denoting optimum quantities with an ( * I ,  we have 

x = I: aiXi (9) 

Since lower level optima are obtained for fixed value of the coordination 

Optimization at the higher level must therefore continue in a direction that 
maintains these lower level optima. To achieve coordination, the problem of 
Eq. (8a) must then be restated: 

n *  min fo(Y) + I: fi(Y) st go(Y) 5 0, ho(Y) = 0 
Y 1 

One approach to constructing approximations to the implicit relations of 
Eq. (10) is to repeat the lower level solutions for several combinations of 
higher level variables. 
gradient optimization schemes or in gradient schemes with finite-difference- 
based derivative estimates. Kunar and Chan [25] used the conjugate direction 
and the conjugate gradient method. 
expensive, this approach is prone to round-off and truncation errors. 
Alternately, as proposed by Sharma et al. [ 1 2 1  the information can be used in 
surface-fitting procedures to construct approximate response surfaces giving 
the lower level optima exp1icitl.y as functions of the higher level 
variables. While this approach appears effective for small problems, the 
size of the sample necessary for large problems with large numbers of higher 
level variables will become prohibitive. 

The resulting information can be used in non- 

In addition to being computationally 

Another approach proposed by Sobieszczanski [7], and Sobieszczanski et al. 
[ 2 6 ]  is to resort to sensitivity analysis of optimum solutions. This 
technique provides exact derivatives of the solution of lower level 
subproblems with respect to higher level variables and permits the generation 
of first-order approximations: 
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Haftka [ 2 2 ]  used a similar approach for penalty function formulations. 

Complete sensitivity analysis of optimum solutions (variables, objective 
and constraints) is numerically costly since it requires second-order 
derivatives of these functions. However, as shown by Barthelemy and 
Sobieszczanski [271, if only the lower level objectives must be known for the 
coordination mechanism, the additional calculations are limited to the 
problem first-order derivatives. 

Sensitivity derivatives are also discontinuous functions of higher level 
variables (Barthelemy and Sobieszczanski, [ 2 8 ] ) .  Presumably, lower level 
subproblem unconstrained formulations based on penalty function formulations 
(Haftka [ 2 2 1 )  or envelope functions (Sobieszczanski [ 7 ]  ) should eliminate 
that difficulty. However, as shown by Barthelemy and Riley [ 2 9 ]  in the case 
where envelope functions are used, driving the solution of the approximate 
unconstrained subproblems to that of the original constrained ones often 
results in rapidly varying (albeit still continuous) gradients, a phenomenon 
that all but brings back the derivative discontinuity issue. It is likely 
that the same problem occurs with penalty functions formulation. Haftka [ 2 2 ]  
proposed to limit the effect of discontinuity by restricting optimization to 
one step at each level in each cycle. Vanderplaats and Cai [30] proposed an 
interesting approach to approximate sensitivity analysis that should 
anticipate constraint switching. No definitive solution exists fo r  this 
difficulty, but no example was ever shown where the derivative discontinuity 
precluded convergence of the procedure. 

Concluding Remarks 

This brief review shows that heuristic multilevel optimization methods 
have a demonstrated potential in engineering design. The most promising 
decomposable problem statement considered is block-diagonal with coupling 
variables. These variables are used at the higher level of the decomposition 
to provide for decoupling of the lower level subproblems and coordination of 
their optimization. The lower level subproblems communicate with the higher 
level subproblem with sensitivity information that may be based on formal 
sensitivity analysis. Various schemes have been proposed and some have been 
demonstrated on very large problems. 

the approach to be taken to obtain such a block angular structure. If 
multilevel optimization is to be applied to truly large engineering systems, 
then the ideas of Rogan and Kolb [18] on scheduling must be further 
developed. One direction is to account not only on the existence of coupling 
as they have done but also on the strength of coupling between variables and 
functions as was done by Bandler and Zhan [14]. 

As stated above, efficiency of the algorithm is one of the most cited 
reasons to resort to multilevel optimization. Yet few of the results in the 
literature are concerned with more than convergence of the algorithm. Haftka 
[ 2 2 1  showed that significant savings could result from limiting iteration of 
the subproblems to as little as one iteration per cycle, while Thareja and 
Haftka [ 2 3 1  showed how further gains could be made by exploiting the 
structure of the problem when calculating and storing derivatives. 
Barthelemy and Riley [ 2 9 1  and Vanderplaats et al. [ 2 1 1  showed good results 
combining decomposition and approximations. The works of Bandler and Zhan 
[ 1 4 1 ,  as well as Barthelemy and Riley [ 291  indicate that it is worthwhile in 
each cycle to optimize only those subproblems that have the strongest 
influence on the problem objective. 

Multilevel procedures are ideally suited for execution in parallel. 
Surprisingly, no engineering application of multilevel methods on parallel 
processors has ever been implemented. Young [311 demonstrated the 
feasibility of using Sobieszczanski,s (71  approach on a network of 
engineering workstations. 

Very little work focuses on the decomposition process itself that is on 
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Finally, as all methods developed for design, multilevel methods must be 
made to conform better to the design process itself. Most complex 
engineering systems require more than two levels for modelization. Initial 
work by Sobieszczanski et al. [32] and Kirsch [171 should be pursued. 
Likewise, particularly in the multidisciplinary context, problems are likeiy 
to have several objectives. Multilevel/multiobjective formulations are 
necessary to determine what design is obtained when each discipline- 
subproblem deals with its own variables, objective and constraints. 
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